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Summary. The gains in yields of mixtures expected to 
follow various methods of selection of components 
from populations of randomly constituted mixtures are 
formulated in terms of a statistical model and a model 
of first-order inter-plant competition. The types of 
selection investigated include that among whole mix- 
tures and among groups or individual components on a 
within-mixture or unrestricted basis, or on the basis of 
the yields of sets of mixtures to which the group or 
individual is common. In all cases the sizes of mixture 
used for selection and for measurement of gain may 
differ. While evaluation of components in groups or 
whole mixtures allows selection for component inter- 
actions, gains are lower overall because of the reduc- 
tion in variance caused by grouping. Gains due to 
interaction are lost if the components are pooled after 
selection, as in a population improvement programme. 
Individual selection carries some risk of negative gains, 
but these are reduced if assessment is made on an 
unrestricted rather than within-mixture basis. When 
second and higher order competitive interactions are 
absent, monoculture assessment is expected to be an 
efficient means of selection of components for binary 
and tertiary mixtures. 
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1 Introduct ion 

In his study of the expected effects of  selection among 
genotypes interacting in groups, Griffing (1967, 1968) 
found that selection operating on groups of one size 
(i.e. number of components) need not necessarily lead 

to positive changes in the mean of the population when 
evaluated in groups of a different size, but also 
concluded that selection based on groups of the appro- 
priate size need not be the most efficient method. 
These phenomena are due not only to the existence of 
associate effects bearing an unknown relationship to 
the direct effects of genotypes, but also to the fact that 
direct and associate effects and any interactions among 
them must be regarded as specific to the size of  group 
considered. Hence response formulae contain covari- 
ances of unknown sign and magnitude. 

Further resolution of this problem requires the 
establishment of some relationship between the param- 
eters defined for groups of different sizes. In the case of 
groups interacting genetically, as do outbreeding crop 
plants when intercrossed to produce synthetic popula- 
tions, the Mendelian model of gene inheritance and 
expression provides the necessary unification. For mix- 
tures of competing genotypes, a model of inter-plant 
competition which permits only pairwise interactions 
can fulfil a similar role, and when shown to be 
adequate leads to simple relationships between mix- 
ture means and variances and the reciprocal of the 
number of components (Wright 1982). 

The present paper considers some of the different 
possible methods of evaluation and selection of com- 
ponents for mixtures on both a within and between 
mixture basis, and develops formulae for their ex- 
pected efficiencies in terms of both statistical and 
competition models. 

2 M o d e l s  

Statistical and competition models appropriate for the de- 
scription of inter-genotypic mixtures were examined in an 
earlier paper (Wright 1982). These will be briefly described 
here. 
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2.1 Statistical model 

A general model for one component of a mixture of equal 
proportions of m components, including interactions up to the 
second order, is 

Xi/j . . . .  = U + V i +  ~ a j +  ~'~ ( v a ) i  j 
j * i  j * i  

+ ~ ~ (aa)jk+ ~ ~ (vaa)ijk (1) 
j:~i k>j  j#,i k> j  

where summation is over the 1 ... m components in the 
mixture. The effects are defined with respect to a large 
reference population of components, and are u, the mean of 
all components in all mixtures, vi, the direct effect of the ith 
component, aj, the associate effect of the jth, (v a)ij, the 
interaction of these direct and associate effects, (a a)jk, the 
average interaction of the jth and kth associates on all other 
components, and (v a a)ijk, their specific effect on the ith. 
Error terms would also be required to describe actual com- 
ponent yields. There is clearly no correspondence between 
similar parameters defined for different sized mixtures, if only 
because an increase in m leads to the use of a larger number 
of parameters to describe a smaller area of land (i.e. 1/m part 
of a plot). A complete notation would therefore include m as a 
subscript to all parameters to emphasise this distinction. 

2.2 Competition model 

This model assumes that there are no pairwise or higher-order 
interactions of plants with respect to the competitive in- 
fluences they exert on others. Thus 

m 

Xi/j . . . .  = ~ ci/j/m 2 , and Yij . . . .  = ~'~ ~'~ c i / j / m 2  
j i j 

where Yij... m is the total mixture yield and xi/j.., m that of the 
ith of its components as before. The parameter ci/j is the 
whole plot yield of component i in purely inter-component 
competition with component j (i.e. if all plants of type i were 
completely surrounded by plants of type j). The yield of a 
mixture is therefore the mean of a two dimensional array of 
these effects, each row of which represents the contribution of 
one component and includes one element which is an intra- 
component yield. 

The equivalence of the effects defined for the competition 
model and those for the statistical model (1) can be estab- 
lished as follows. If c. is the mean of the intra-component 
effects ci/i, over the population, ci/. and c./i are the mean direct 
and associate intercomponent effects for the ith variety, and 
c./. the grand mean of all inter-component effects, and m i= m-i  

U(m ) = (c. + mt c./.)/m 2 , 
V(m)i = ((Ci/i --  C )  -t- m I (ci/ '  --  c . / . ) ) / m  2 , 
a(m)i = (C/i --  c / . ) / m  2 , 
(V a)(m)ij = (Ci/j --  Ci/" --  C./j + c . / . ) / m  2 . 

This model, when appropriate, allows an explicit formulation 
of all statistical parameters for mixtures of any size. The 
absence of any higher order statistical effects allows the 
adequacy of the model to be tested using analysis of variance 
of the total or component yields of sets of mixtures of three or 
more components, and the linear relationship between mixture 
mean and the reciprocal of the number of components 
provides a basis for the construction of scaling tests using the 
means of mixtures of different sizes. 

Variances and covariances among mixture total and com- 
ponent yields can be expressed in terms of the competition 

model. For the purpose of examining selection response, the 
following relations are necessary: 

O'v(m)v(k) = (var Ci/i -4- (ml + kt) coy Ci/i Ci/' 
+ ml kt var ci/.)/m 2 k 2 

O'a(m)a(k) = var c./i/m 2 k 2 

tTv(m)a(k) = (COV Ci/i C./i + m 1 c o v  ci/ '  c . / i ) / m  2 k 2 
O'va(m)va(k) = v a r  c i / j / m  2 k 2 

where the variances and covariances of competition effects are 
defined with respect to the whole of the reference population, 
and var ci/j is an abbreviation for the variance of the residuals 
(ci/j - ci/. - c./j + c/.). Other statistics can be obtained by 
appropriate substitutions for k and m. 

It is clear from these relations that when the competition 
model is adequate, then the aj and v aij effects for mixtures of 
one size are perfectly correlated with the respective sets for 
mixtures of a different size. It can be shown that the 
correlation of v i effects for mixtures of one size with those of 
another decreases monotonically as the difference in size is 
increased. 

3 Selection response 

3.1 Plant breeding context 

A typical breeding programme involves a series of 
cycles of selection and reproduction during which the 
number  of units is initially large but later is reduced as 
the final candidates for varietal production are identi- 
fied. Because of the large numbers,  a redefinit ion of 
the objective of the programme to produce mixture 
components rather than monocultures without serious- 
ly increasing the resources required means that each 
candidate can only be included once in a mixture with 
other candidates which are generally chosen at 
random. This is the principle assumed in the methods 
of mixture and component assessment to be investi- 
gated here. In general the number  of components in the 
mixtures assessed (k) need not equal that of the 
mixtures to be finally produced (m). Only in the final 
choice of components for mixtures to be released will 
more extensive methods of testing be feasible, such as 
the production of all possible mixtures of given size 
among the candidates, or the inclusion of each in 
sufficient combinations to allow the estimation of 
general and specific effects as a basis for choosing 
certain single genotypes, pairs, or larger groups (group 
testing). 

A second principle distinguishes these two phases 
in many programmes. If the candidates for selection 
are a group of established varieties or the final prod- 
ucts of a breeding programme, then any mixtures 
which are constituted from them are ready for agri- 
cultural testing and subsequent release, and all gains, 
whether due to main  effects of components or inter- 
actions among them, are utilised. The same will be true 
in a pedigree breeding programme in which the pro- 
genies at each generation can be assembled into the 
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same combinations as those in which their parents were 
assessed for selection. If, on the other hand, selection is 
carried out on a population of  families or genotypes at 
an intermediate stage of  a recurrent selection pro- 
gramme, then the selected components will be as- 
sembled in a common pool for intercrossing so that 
many of  the associations tested by the selection of  
components in mixtures will be dissolved, and the 
response due to the interaction of  two or more com- 
ponents will be reduced. For most practical purposes it 
may be assumed that all the gains due to component  
interactions are lost following pooling. In fact, these 
gains will be further reduced by the intercrossing 
process itself, or by selfing in the pedigree programme, 
so that only the additive genetic component  is re- 
tained, but questions about the inheritance of  the 
various competition parameters must be considered as 
a separate, but extremely important topic. There are 
thus two separate situations with distinct consequences 
for the relative efficiencies of  different selection 
methods. 

3.2 General principles of the formulation 
of expected responses 

The formulation of  the expected response to selection 
among whole mixtures or their component  genotypes is 
achieved by treating response in one variable (z) as a 
correlated effect of  selection imposed on another (w). 
Then, according to the usual principles of  linear 
prediction 

R (z/w) = i cov (z, w)/var (w)1/2 

where cov (z, w) is the covariance of  the true values of  
z and w, var (w) is the variance of  the observed values 
of  w, and i is the selection intensity in standard 
deviation units (Falconer 1960). This gain is the 
difference in mean value of  mixtures of  size m con- 
structed from components drawn from the unselected 
and the selected populations. It should be noted that 
the selection intensity when is a function only of  the 
numbers o f  candidates assessed and selected, and not of  
the size of  mixtures used, it does not influence com- 
parisons among different methods. 

The expectation of  any covariance required for the 
formulation of  the response to selection of  a particular 
type can be found directly from model (1). However, 
more general expressions can be derived which empha- 
sise the overall form and properties of  such statistics 
and allow specific cases to be extracted as required. A 
very general covariance can be defined as that between 
1 components of a mixture of  k components and q 
components of  a mixture of  m, the mixtures having a 
total of  u components in common, t of  which also occur 
in the group of  q, s in the group of  1, and r are common 
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to both groups. This definition therefore depends on 
eight parameters, although only six of  these determine 
the coefficients of  the components of  covariance, k and 
m serving to define these components. In terms of  
model (1), and including terms up to the first order of  
interaction 

C~, (r,s,t,u;) 
vv(1,q,k, rn) =- r O'v(m)v(k) + r 11 O'v(m)a(k) + r q l  O'a(m)v(k) 

+ (lq u -  q t -  ls + r) aa(m)a~k)+ r ul ava~m)va(k). 

A simpler form of this covariance which is ade- 
quate for the description of  most selection problems 
applies to the case in which each group contains only 
components which are either common to the other 
group or are unique (i.e. s = t = r), so that, with six 
parameters 

cov (r, u; 1, q, k, m) = r O'v(m)v(k) -~- r 1~ O'v(m)a(k) 
+ r ql O'a(m)v(k) -t'- (r 11 ql (4) 
+ (u - r)lq) O'a(m)a(k) 
+ r ul O'va(rn)va(k) �9 

The expectations of  cov (z, w) and var (w) for par- 
ticular selection methods can be found by substitution 
of  the appropriate values for the six parameters in (4) 
above, although var(w) will also contain components 
of  error variance. However, when the selection unit is a 
group of  p components (i.e. p will equal k for selection 
among whole mixtures, and 1 for individual compo- 
nent selection), then the covariance has to be multi- 
plied by m/p  to give cov (z, w), since this is the number  
of  groups required to make up one whole mixture of  
m .  

The values of  the six parameters r, u, 1, q, k, and m 
in cov (z, w) and var (w) for various types of  selection 
are given in Table l, together with their resultant 
expectations in terms of  model (1). Those for var(w) 
show some of  the contributions from higher order 
effects as well as from ~w and O~e~, the error variances 
arising within and between mixture plots. Table 2 gives 
the same expectations (excluding the error compo- 
nents) in terms of  the competition model. 

Each method of  selection can be characterised in 
terms of  the selection criterion which it effectively 
applies to each candidate. These can be deduced from 
Tables 1 and 2, because the criterion is the term w in 
both cov(z, w) and var(w) which gives the expanded 
form in terms of  the main effects of  components. The 
response criterion is similarly z, and is always propor- 
tional to V(m ) + ml a(m), or to ci/i -t-- ml(ci/. + C./i) under 
the competition model. 

3.3 Between mixture selection 

When the components of  a mixture cannot be sepa- 
rately harvested, then selection can only be carried out 
on the basis of  the total yields of  whole mixtures, 
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Table 1. The expectations of cov(z,w) and var(w) for different selection methods expressed in terms of a statistical model 

cov(z,w) C o m m o n  Ov(m)v(k) Ov(m)a(k) O'a(m)v(k) Oa(m) a(k) Ova(m)va(k) 
factor ~ 

Between mixtures m / k  cov (k ,k ;k ,m,k ,m)  m 1 ka ml maka ka 

Unrestricted: 
individual m cov(l ,  1; 1, m, k, m) m 1 0 m~ 0 0 
group m / p  cov(p, p; p, m, k, m) m 1 p~ m~ m~px p~ 

Within mixtures: 
individual mkx/k 1 - 1 ml -mx 0 
group m (k-p)/k 1 - 1 mx - m i pl 

Group testing m / p  cov (p ,p ;k ,m,k ,m)  m 1 k, ml kaml pl 

var(w) c o m m o n  ~v(k) O~a (k) Ov(k)a(k) O2va (k) O2aa (k) Oavaa(k) ~eb ~ew 
factor a 

cov(k, k; k, k, k, k) k 1 k 2 2kl kl Y~k~k~ Y2klk ~ 1 I lk  

cov(1, k; 1, 1, k, k) 1 1 k~ 0 kl Y~kxk2 Yakxk~ I l k  ~ l / k  a 
cov(p, k; p, p, k, k) p 1 k ~ p + l  2pa k~ - - p~/k 2 p /k  a 

k l / k  1 1 - 2  k~ k~ Y2k~ka 0 1/k 2 
p (k-p)/k 1 1 - 2  k~ - - 0 p /k  ~ 

p 1 kx a 2k~ p~ Y~plk~ ~/~pxP2 I / N  1/kN 

Between mixtures 

Unrestricted: 
individual 
group 

Within mixtures: 
individual 
group 

Group testing cov (p, p; k, k, k, k) 

" To simplify the form of the coefficients, a common factor has been extracted from all element other than r and ~ w  in each row 
- Coefficient not evaluated 

Table 2. The expectations ofcov(z ,w) and var(w) for different selection methods expressed in terms of a competit ion model 

COV (Z, w) C o m m o n  var  ci/i coy ci/i ci/. coy ci/i c./i coy ci/. c./i va r  ci/. va r  c./i va t  ci/j 
factor a 

Between mixtures 1/mk 2 1 ml + ka ma + k~ 2m~kl mlk~ mlk~ k~ 

Unrestricted: 
individual 1/mk 2 1 ml + k~ ml mak~ m~kl 0 0 
group 1/mk 2 1 m~ + kl ma + pa (p~ + kl) ml ml kl mlpa pa 

Within mixtures: 
individual k~/mk 3 1 m~ + k~ m2 m~k2 m~k~ - m~ 0 
group (k-p) /mk 3 1 m~ + k~ m2 mlk2 mlkl  -m~ p~ 

Group testing 1/mk 2 1 m~ + ka m~ + ka 2mak2 m~k~ m~kl p~ 

var(w) 

Between mixtures 1/k ~ 1 2kl 2kl 2k~ k~ k~ kl 

Unrestricted: 
individual 1/k 4 1 2ka 0 0 k~ ka ka 
group p / k  4 1 2kl 2pl 2pxka k~ k~p + 1 kl 

Within mixtures: 
individual kl / k s 1 2kl - 2 - 2kl k~ 1 kl 
group p(k-p) /k  s 1 2kl - 2  -2ka k~ 1 ka 

Group testing p / k  4 1 2kx 2kl 2k~ k~ k~ p~ 

a To simplify the form of the coefficients, a common factor has been extracted from all elements in each row 
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accepting or rejecting all k components together. If a 
population of candidate genotypes is assembled at 
random into mixtures, the effect of such grouping is to 
reduce the rate of response to selection, and in com- 
parison with unrestricted individual component selec- 
tion, Table 1 shows an inflation of var (w) leading to a 
reduction in response by main effects by a factor of 
k I/2. It should be noted that no variances arising among 
components within the mixtures (other than error) 
contribute to vat (w) because these components are the 
fixed constitution of the mixture, and not a sample. 

One property which is apparent from Table 1 is the 
occurrence of covariances between direct (v) and as- 
sociate (a) effects in both cov (z, w) and var (w). This is 
because, in terms of main effects, selection is practised 
for V(k)+ k~ a(k) and response is measured in terms of 
V(m)+ml a(m). When the competition model is ade- 
quate, these criteria can be written as ci/i -k- kl (ci/. + c./i) 
and ci/i -I-- m~ (ci/. + c./i). Response to mixture selection 
is always positive when k = m, and this is the only 
simple method of selection which can ensure this 
outcome, since coy(z, w) can be written as a variance 
(see also Griffing 1967). Although the statistical model 
can give no information as to the likelihood of negative 
responses when k 4: m, these are seen to be unlikely 
under the competition model unless the ci/i terms are 
negatively correlated with (ci/. + c./i) and m and k are 
widely different. 

The major benefit of mixture selection is its utilisa- 
tion of component interactions up to the kth order. 
This benefit is lost when pooling follows selection, and 
in any case there is no advantage in increasing k 
beyond m. Again, no relationship can be established 
between interaction parameters defined for mixtures of 
different sizes, and the possibility of negative contri- 
butions to response from interactions cannot be ruled 
out. However, under the competition model only inter- 
actions of the first order are possible, and these are 
perfectly correlated among mixtures of different sizes. 

Selection could be based on random groups of 
whole mixtures, but as pointed out by Griffing (1968), 
this is unlikely to be efficient, and in fact causes a 
reduction in response of the same order as that induced 
by grouping of components (i.e. a factor of pl/2 for 
groups of size p). 

3.4 Unrestricted component selection 

Unrestricted component selection involves the separate 
assessment of components and their selection on the 
basis of observed yields without any reference to the 
yields of the mixtures in which they occur. Table 1 
shows that cov(z, w) takes a very simple form because 
the selection criterion is now dependent simply on V(k) 
effects (or ci/i n c kl ci/.). Negative response can occur 

whenever ml O'a(m)v(k) is negative and exceeds O'v(rn)v(k). 

The competition model shows this to be more likely 
than with between mixture selection, especially with 
large mixtures and when ci/. and c./i are negatively 
related, as will normally be the case. 

Although individual component selection avoids 
the overall reductions in gain caused by grouping, it 
can make no use of component interactions. A com- 
promise measure which might be considered is selec- 
tion among groups of p components, each group 
formed from components of the same mixture. Group- 
ing incurs the usual reduction in gain o f  pl/2, and 
Table 1 also shows that the contribution of O'a(m)a(k) to 
var(w) in this case is greater than when whole mix- 
tures of the same size are used. This is due to a con- 
tribution made by the (k - p) components of the mix- 
ture not contained in the group itself. In spite of these 
factors, it is not possible to predict with any certainty 
that within-mixture grouping will be less efficient than 
whole mixture selection, because the selection criteria 
themselves differ, that for groups of p being ci/i-l- k l ci/. 
+plC./i, and that for whole mixtures of p being 
Ci/i -t- Pl (Ci/.'t- C./i). 

3.5 Within mixture selection 

In this case the yields of components are expressed as 
deviations from their mixture means before selection is 
applied. The expectations of cov (z,w) and var (w) are 
not found directly from the general covariance expres- 
sion, but by difference between unrestricted and mix- 
ture statistics. The chief property of within-mixture 
selection not shared by the other methods is its 
freedom from between plot errors (aZb), and this could 
be a significant advantage in many situations. How- 
ever, it carries an even greater risk of negative response 
than does unrestricted component selection, because 
direct and associate effects are in opposition in the 
selection criterion of v(k ) - a(k) (or ci/i -4- kl ci/. - c./i), and 
the covariance of v and a effects makes a negative con- 
tribution. Response to selection will be negative 
whenever O'v(m) a(k) -'b m I O'a(rn ) a(k) exceeds O'v(m) v(k) q- 

m l  O'a(m)v(k) , which for m = k = 2  simply depends on 
> a 2. With very large mixtures, the expectations of 

unrestricted and within mixture selection are very 
similar, but with small mixtures, within mixture selec- 
tion suffers an overall disadvantage of (kl/k) 1/2. It is 
worth noting that when k is large and m = 1, the situa- 
tion described is that in which individuals undergoing 
mixed competition are being selected for monoculture 
performance, as is the case for segregants in a normal 
pedigree system. Response is dependent entirely on 
cov ci/i el/., that is the covariance of monoculture per- 
formance with direct effects defined under purely 
inter-component competition. 
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As in the case of  unrestricted selection, components 
could be grouped for selection within mixtures, but 
now also evaluated on a within mixture basis. It is 
interesting that such grouping has no effect on the 
selection criterion, and does not lead to the inflation of  
var (w) due to associate effects which occurs with un- 
restricted selection. However, the overall reduction in 
expected response due to the combined effects of  
grouping and within mixture restriction is of  the order 
of ((k - p)/k p)1/2, so that this method is not expected 
to be efficient. 

It may be noted that between mixture, unrestricted 
and within mixture selection methods are all specific 
types of a selection index employing information on 
mixture means and within mixture deviations. It is 
possible that all of  these are markedly inferior to the 
optimum index suggested by Griffing (1969), for 
which estimates of  cov (z, w)/var (w) for between and 
within mixtures would be used as weights. The prob- 
lem in practice would be to obtain estimates of  these 
statistics. 

however, 
size and 
cessively 
this case, 

3.6 Group Testing 

When interest is centred on relatively few varieties or 
genotypes as final candidates for mixture production, 
then the evaluation and selection of  each variety may 
be based on the average value of  a group of  mixtures 
in which the variety is a common constituent, the 
others being chosen randomly or systematically from 
the remainder of  the population. In analogy with 
progeny testing in genetic selection, estimates of  the 
main or general effects of  candidates are sought. Ac- 
cordingly this method will be referred to here as group 
testing. 

If  the group used is large, and contains no two mix- 
tures with more than the one common constituent, then 
response depends directly on the covariance of  two 
mixtures with one common component. In practice 

such groups of  mixtures will be restricted in 
may contain sub-groups with two and suc- 
higher numbers of  common constituents. In 

var (w)= 1/N(~ i (ni-ni+0 

+ ~72b/N + a~w/N k 

cov (i, i, k, m; k, m)) 

in which n i is the size of  the sub-group with i common 
constituents. If  no such sub-groups exist, then the 
above statistic is only influenced by the limited group 
size, so that nt = N, n2 = ns = ... = nk = 1, and 

var (w) = (N - 1)/N cov (1, 1; k, m; k, m) 

+ 1/N cov (k, k; k, m; k, m) + a~b/N + a~w/N k.  

In each case, cov (z, w) contains only the main effect 
components of  covariance which occur in var (w), so 
that 

cov (z, w) = 1/N ( h i -  ni+ 1) i O'g(m ) g(k) �9 

More generally, selection can be carried out among sets 
of  p constituents on the basis of  groups of  mixtures to 
which they are common, so that summation in var (w) 
is taken over sub-groups with from p to k common 
constituents, and cov (z, w) contains components up to 
the p-th order (Table 1). 

Simple between mixture selection is a special case 
of  group testing with a group size of  one (i.e. 
N = ni = 1 for all i), and serves as an appropriate basis 
for the assessment of  the effects of  increasing group 
size. The chief consequence of  using groups is the 
reduction or removal of  all interactions of  higher order 
than the size of  the common set (i.e. p). Since the 
method is only likely to be considered late in a pro- 
gramme, and at this stage it is possible to utilise all im- 
portant interactions as well as main effects, the only 
situation in which it could have any possible advantage 
over mixture selection is when all effects and inter- 
actions up to the pth order are large, and those of  
higher order are insignificant. In view of  its inherent 
costs and necessarily lower selection intensity, it can be 
concluded that group testing is unlikely to play a major 
role in component selection programmes. 

3. 7 Comparisons among methods 

When statistical analysis indicates the absence of  all 
but main effects, then it might be assumed that mono- 
culture assessment is an adequate means of  evaluating 
performance in mixture. However, it has already been 
pointed out that even under the first-order model of  
competition, the main effects vi and ai for monocul- 
tures or mixtures of  one size are not necessarily 
strongly correlated with those of  another, and this 
property is unaffected by the absence of  first-order 
terms (i.e. var ci/j = 0). Even this simplest situation is 
governed by six parameters (Table 2) and so leads to 
very few general statements as to the superiority o f  any 
type of selection. 

However, the conditions governing one particular 
comparison, that between the efficiencies of  assessment 
in monoculture and that in mixtures of  size m (i.e. 
k = m), can be formulated more exactly. Initially as- 
suming error variance to be zero, the ratio of  the ex- 
pected gains is 

R (mono)/R (mix) = (var Ci/i -l'- ml COY Ci/i C i ) /  

(var ci/i (var Ci/i + 2 ml cov ci/i ci + m~ var ci)/m) 1/2 
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where ci is written for (Ci/" q" C./i). Monoculture assess- 
ment is the more efficient when this ratio exceeds 
unity, and this depends on 

ml ( m r  2 -  1) + 2 m l  r t l /2+ t > 0 

where r is the correlation of ci/i and ci effects and t is 
the ratio var ci/i/var ci. The efficiency of monoculture 
assessment relative to that of mixtures is enhanced as 
either r or t is increased, so that it is the greater when r 
is positive and t exceeds m~ or with any value of r 
when t exceeds (m ml). In the great majority of com- 
petitive situations, the high yield of one component is 
achieved at the expense of, rather than to the benefit of 
its associates, so that the true inter-component direct 
and associate effects ci/. and c./i are strongly negatively 
correlated. This reduces the variance of their sum ci 
which may therefore be expected to be lower than the 
monoculture variance, so that t is greater than unity. 
The sign of the correlation r depends on whether it is 
the more or the less aggressive competitors which tend 
to have the higher yields in monoculture, and although 
there are recorded instances in which high yield is 
associated with low aggressivity (Hamblin and Donald 
1974), more commonly r will be positive. Because of 
their larger variance, the efficiency of monoculture 
assessment is less severely affected by error variation 
than that of mixtures, so that there are clearly many 
situations in practice, particularly for small values of  
m, when monoculture assessment is to be preferred to 
mixtures. 

This conclusion may be checked, and some other 
comparisons made, by computing the expected effi- 
ciencies of different types of selection over a range of 
parameter values and typical mixture sizes. To do this, 
the six parameters in Table 2 were reduced to three by 
arbitrarily fixing the value of var ci/i, and by assuming 
ci/. and c./i to be perfectly negatively correlated and 
rc i / i c . / i  to be equal in magnitude and opposite in 
sign. Responses to selection among monocultures, 
to unrestricted selection, and selection between 
and within mixtures of two, three and four compo- 
nents were evaluated for a range of models with the 
ratio t=varci / i /varci / ,  varying between 1/16 and 16, 
with var c./i -< var ci/., and r ci/i ci/ f r o m  - -  1 to 1, again 
ignoring error variation. When the objective was to 
select components for binary mixtures, the highest 
responses were predicted for monoculture selection in 
59% of cases and for unrestricted selection in the 
remainder, the response for unrestricted selection vary- 
ing only slightly with changes in mixture size. Within 
mixture selection was always inferior due to the small 
size of mixture. If it is assumed that components could 
not be separately measured, so that unrestricted and 
within mixture selection could not be carried out, then 
monocultures were preferred in 69% of cases and 

binary mixtures for the remainder. Similar computa- 
tions for the improvement of tertiary mixtures gave 
figures of 47:53 for monocultures and unrestricted 
selection when components could be separated, and 
57 : 43 for monocultures and binary mixtures when they 
could not. If only the more likely set of parameter 
values with t greater than one are considered, the com- 
parative figures for binary mixture improvement be- 
come 27:3 and 29:1,  and for tertiaries 19:11 and 
25 : 5. In all cases, comparisons of the methods on the 
basis of the incidence of negative responses gave a 
similar pattern. 

Tables 1 and 2 show that the existence of any form 
of error variation will favour unrestricted and mono- 
culture selection over mixtures, a differential effect on 
these two depending on the balance of within and be- 
tween plot errors. It may therefore be concluded that 
under a competition model leading only to main 
effects, monoculture selection has at least as much 
potential as unrestricted selection for the improvement 
of binary or tertiary mixtures, both being superior to 
between mixture selection. 

4 Conclusions 

In practice, the total gain to be expected from any 
method of selection when the target and assessed mix- 
tures are of the same size (k = m) can be predicted 
from the true variance of selection units, whether com- 
ponents or mixtures, and the standard deviation of 
their observed values, so that separation of treatment 
and error variance components is all that is necessary. 
When k �9 m, then mixtures of the target size will also 
need to be grown so as to allow analysis of the covaria- 
tion of the two types of mixture and estimation of the 
true covariance of the selection units. In neither case is 
a knowledge of the component structure of variances 
and covariances, as provided by Table 1, necessary for 
prediction. Only if a prediction of the loss of gain on 
pooling of components were required would a more 
complex analysis of structured sets of mixtures be 
needed to separate the covariance due to component 
interaction from that of main effects. 

However, the main purpose of this paper is to 
identify the essential properties of the various selection 
methods, and as far as possible make general predic- 
tions as their relative efficiencies. The following impor- 
tant principles have been recognised. 

(i) Selection among groups, whether these are 
whole mixtures or groups of components from them, 
allows evaluation and selection of component interac- 
tions, but at the expense of expressed variation and 
overall response. 

(ii) The overall and relative magnitudes of error 
variation arising within and between plots influences 
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the relative efficiencies of  the different methods. For  
instance, within mixture selection may become an at- 
tractive prospect when the variation among plots is 
large. 

(iii) Positive response to selection can only be 
assured when selection is practised among mixtures of  
the required size. Individual component selection can 
result in negative response whatever mixture size is 
used, particularly if assessed on a within mixture basis. 

(iv) When components are pooled after selection, as 
will commonly be the case in the intermediate stages of  
breeding programmes, then little response due to inter- 
actions of  components can be retained. Thus individual 
component selection will have a relatively higher effi- 
ciency than when mixtures are being finally con- 
structed. 

(v) When the competition model holds, the correla- 
tion between effects defined for mixtures of  different 
sizes is a decreasing function of  this difference. The 
overall effect of  the size of  mixture used for between 
mixture selection is therefore determined jointly by 
this correlation and the deleterious effects of  grouping. 

Hence monoculture selection has been shown to be 
very effective for binary mixture improvement, a little 
less so for tertiaries, and may be relatively inefficient 
for the improvement of  large mixtures. 
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